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WEAK EVAPORATION OR CONDENSATION PROCESS ON A FLAT 

SURFACE WITH EXCITATION OF THE INNER DEGREES 

OF FREEDOM OF MOLECULES TAKEN INTO ACCOUNT 

I. V. Chermyaninov and V. G. Chernyak UDC 533.6.011.8 

The evaporation (condensation) rates and temperature jump are calculated in a vapor 
in contact with its intrinsic condensed phase. The contribution of the vapor mole- 
cule innerdegrees of freedom is analyzed. 

The solution of the problem of the Knudsen layer for amonatomic gas has been obtained 
in many papers. Investigation of the influence of the internal degrees of freedom of the 
molecules on the magnitude of the temperature jump, and if there is an evaporation (condensa- 
tion) process, then on the magnitude of the evaporation rate is of interest. Expressions 
have been obtained in [i] for the density Jumps, the tranlational--rotational and vibrational 
temperatures on a flat impermeable surface. Here the possible nonequilibrium of the molecule 
rotational degrees of freedom in the Knudsen layer is not taken into account. The temperature 
jump and temperature distribution near the wall in a monatomic gas are calculated in [2]. A 
model kinetic equation of Morse type [3] is used, in which the collision integral is replaced 
by two terms of relaxation type that model the elastic and inelastic collisions, respectively. 
The results of numerical computations are presented in the form of tables. In addition to 
the temperature jump in [4], a weak evaporation (condensation) process is considered with ex- 
citation of the molecule rotational and vibrational degrees of freedom taken into account. 
A numerical result is obtained for a diatomic gas with rotational degrees of freedom. Ex- 
actly as in [2], all the computations were performed on the basis of the model Morse equation 
[3]. This equation, which is one of the first for a gas with internal degrees of freedom, 
does not contain the necessary set of relaxation times and does not yield a correct descrip- 
tion of all the distribution function moments of physical importance. 

The purpose of this paper is to obtain analytical expressions for the evaporation rate 
and the temperature jump of a polyatomic gas with slow evaporation and condensation proces- 
ses on a plane interphasal interface taken into account. Excitation of both the rotational 
and the vibrational degrees of freedom of the molecules are here taken into account. A model 
third-order kinetic equation [5] is used to solve the problem, which permits obtaining exact 
equations for all moments of the distribution function that have physical meaning, and as- 
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sures accurate results for the passage to the hydrodynamic limit. The possibility of arbi- 
trary accommodation of the translational, rotational, and vibrational energies of the mole- 
cules being reflected from the interphasal surface is taken into account in the boundary 
conditions for the distribution function. 

Let the phase interface agree with the x = 0 plane, where the gas occupies the half 
space x > O. A temperature tradient normal to the plane x = 0 is maintained in the vapor, 
and transport of the substance (evaporation and condensation), characterized by the mean 
mass rate U, holds. Evaporation (condensation) is assumed slow so that (m/2  kT~)lJ2U<<I. In 
this case the following problem linearization conditions are valid: 

, , Tt T r : r n = n ~ ( 1 - v - v , ) ,  T =  T~(I + T , ) ,  T t=T~(1 -~-  ,), T ~ ( l + z . ) ,  

T ~  T,(1 + ~),  ~. ,  ~.,  ~ ,  ~{, .~<< 1. (1) 

Here  T i s  u n d e r s t o o d  to  be t h e  t o t a l  t e m p e r a t u r e  d e f i n e d  a s  cvT 3 k T t  ' " T ~ ~' ~' = ~ cv - -  cv T 
2 

It is assumed that the gas state on the upper boundary of the Knudsen layer is described 
by a Chapman--Enskog distribution function. It is hence assumed that far from the inter- 
phasal boundary the translational T t, rotational T r, and vibrational T v temperatures are mu- 
tually equal; their distinction is taken into account only in the Knudsen layer, and is given 
a foundation by the different accommodations of each kind of energy. The total distribution 
function for molecules in the i-th rotational and j-th vibrational states is sought in the 
form of a perturbed Chapman--Enskog distribution 

[~J = P~ (Tr) P~ (T v) [o (x, V 2) [1 § q)~ + h~j (x, V)], (2) 

where 

= exp  , fo (x, VD n (x) ~ 2~k-~t (x) 2kT t (x) 

exp  [--E~/kT ~ (x)] 
, o ~ = r ,  v; [ ~ = i ,  1. 

P~ (T=) = X exp [--E~/kT ~ (x)] 

The first-order correction to the Chapman--Enskog function is written in the form 

c = v, ~ = E~/kTs, < ~ > = Eo/kTs, 

where the angular brackets denote taking the average over the internal states of the mole- 
cules �9 

Selection of the distribution function in the form (2) is convenient in that the desired 
perturbation function hij on the outer boundary of the Knudsen layer vanishes. 

Since collisions accompanying transitions in both the rotational and vibrational spectra 
are simultaneously quite rare, we will therefore neglect them. Then taking into account (2), 
the model kinetic equation [5] for the perturbation function hij is written in dimensionless 
form : 

x - O - ~  = vL -v- v,.i (1 - -  L) + ~ AI"~ t -.~ 2T Ot C--~V]~ "C r +-~-C*---E-~)(C2--3/2) C 

-5 ['~ (L - -  a) + r t] (a~ - -  < 8" > ) -~- [r (L - -  cd)+cz'Tq (e}' - -  < ~ > ) + 

Here 

4 
+ c~ (d- - -  5/2) (ZoR1 + Zl) + c= (8~--  < ~r > ) (~oR.. + Zo_) + c~ (~}' - -  < 8 ~ > ) (~oR~ + z3) - -  h,~. 

15 

(4) 

( I  _ i _ 5  c~, 5 c'v ~ mU 5 mU 5 a' rniY 15 R1 
' 6 k a +  - ~ - - - f - c z ' ]  - -  - -  

\ , k~l 4 a k~t 4 k~l 4 ' 

R 2 = - -  1 + 1, R3 ~ kal 3 k~ 
Cv kq 3 kq Cv _ 

i, 
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5 c~ 5 c~ )S' 
Z, = 1 3 k r162 3 k a' + 5 /2aY + 5/2r v, 

Z ~ =  2 cv 1 Z 8 =  2 cv 1 2 S~ + ' ~  S' , 

A , =  I 3 k a - -  3 k ='' L=--~-(=:I-a') ,  y = x  p' ( m "i '/~" ,I k 2-~YT / ' 
xo=lVT[ ,, (2kT. I'/~ "r. =, T,1 8= TD~r 

Ts Ps k m ] "frr Too T'n 

8' = xD~ , Tn ~1 
~n Ps 

and the relaxation times xn, ~rr, Xw, ~Drr, XDvv for a given intermolecular interaction po- 
tential can be calculated from formulas presented in [6], and their physical meaning and re- 
lationship to the transport coefficients are discussed in detail in this same paper. 

The dimensionless quantities v, vij , T t, Tr, Tv, S t , sr, S v in [4] that characterizes 
the relative deviation of the macroscopic parameters in the Knudsen layer from their values 
in the Navier--Stokes domain are determined as follows 

TI=xIV rl (5) % = _xl. VTI +w, + , t .  
T, * T, 

Qt = [ m \2-~s  , I'/= - = q, (2k-~--s) '/=[VTIp~ L' + St, l = ,. r, o; 

A = =-z/= ~ PIP7 ~ exp (--c z) Bh,#c,  A = (A.) = (v, x', x ~, x ~ S', S',  $9 ,  
ii 

B = ( B n ) = [ 1 ,  2]3c z'--1, e~(<e r > ) - l - 1 ,  e~(<e =>) -1 -1 ,  c(cz--5/2), 

v~=n-s.:21'hijexp(--c~)dcis the relative deviation of the numerical density of the molecules in 

the states i, j from the equilibrium value, qt qr qV are the thermal flux density vector 
components due to the translational, rotational, and vibrational degrees of freedom of the 
molecules, respectively. 

We take as boundary condition that the fraction am of molecules incident on the con- 
densed phase surface is absorbed by it, while the fraction (1 -- am) is reflected diffusely 
with a Maxwell velocity distribution and Boltzmann rotational and vibrational energy distri- 
butions with the temperatures T~, T~, T~, respectively. The reflected molecules can here 

experience arbitrary accommodation of the translational, rotational, and vibrational ener- 
gies. 

We write the distribution function for the molecules leaving the surface in the follow- 
ing form 

y+ (x = o, v .  > o) = =..f~i + (1 - ~) f~r 

rn 
f~]= P~ (Ts)P~ (T,)ns ( 2zkTs )3/2 exp (-- - -  

[ii pr (T~) i (T,) n~ 2nkT~ -- --- 

mo~ ) 
2kTs ' 

mo 2 
2kr~ )" 

(6) 

Under weak evaporation (condensation) conditions it is possible to set 

n ~ = n s ( l + % ) .  T ~ = T ~ I I + x ~ ) .  l = t .  r, v. (7) 
The unknown parameters Vr, T~, z~, x~ can be expressed in terms of the evaporation co- 

efficient Um, the accommodation coefficients of the translational u~, rotational u{, and vi- 
brational a~ energies in conformity with the following relationship: 

IN+l = ~.,,I N~ I+ (1 --==)1 N-I. (8) 
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a~= (1--a~)tl~l--II~,i l = t ,  r, v. (9) 
(1 - -  a . , ) i  ib l  - -  I ! ~  I " 

Here IN~i is, respectively, the incident and the emitted vapor molecule flux from the inter- 
phasal surface, [Nsl is the molecule flux from the surface in the case of thermal equilibrium 
between the vapor and its condensed phase, liFT11 is the energy flux of the translational, rota- 
tional, and vibrational degrees of freedom of molecules incident on the surface, i]~,i is the 
energy flux for molecules reflected by the surface, and ll~iI are the reflected molecules en- 
ergy fluxes under the assumption that the translational, rotational, and vibrational tempera- 
tures equal to the surface temperature T s. 

Taking (7) into account after linearization, the boundary condition (6) for the perturba- 
tion function becomes 

h+ (0, cx) = ( 1 - -  ~ )  [v~ + (c z - -  3/2) ~[ + (e~-- < e r > ) z; + (r ( e~ > )~l + 

k m~ ~ - (10), +%c~[ 2 __mk' (c2 512)+--k m~ ~ (e~--<e r>) + c~ k-~--(e~-- <to>)_" 
5 k~, c~ kn 

R e p r e s e n t i n g  (4) in  i n t e g r a l  form wi th  the  boundary c o n d i t i o n  (10) t aken  i n t o  accoun t ,  
a sys tem of  i n t e g r a l - m o m e n t  e q u a t i o n s  f o r  t he  q u a n t i t i e s  v ( y ) ,  z ( y ) ,  S r ( y ) ,  SV(y) can be ob-  
t a i n e d  by means of  the  d e f i n i t i o n s  (1) and (5 ) :  

V--~-v=(l__am)[V~do+.~(d__l/2do)]__2u~Ja_a 2 (ink t 2 RI) X 
�9 " "-5-% ki I 3 ,. 

X (j3__~/2jl)+ i {vj_~ + [~:_p(, k l 
b . c  v a 

9_', ] ( s , -  z, 
i ay '  ] / 

" - -  CV I }' ~ - T ~ = ( l - - a , ~ )  %(d~--I/2Jo)+ 
L 

, V -r k ~c~ do -- 2ux(d3-- !/2dl)+ % T kq 

k 
, T [ j 3 _ j I @  (Cv 1 . ) j _ l ] @ [ ( , c v  -r k 4 

,) or--7- cv 

(.L., --- 3/2J0) sgn (g - -  V')} dg'. 

( t 5 " 2~_ Tf ' 

2 R1)(J~--2J3 ' 
3 , 

J, + !" v (d l - -  1/2J-O .'.+ 
0 

2 aS ~ ] 
3 ) Oy, ] ( d ~ -  d , - -  

1 j _ ~ ) + 4  f 7 / 
4 , q T z ' I , , J ' - 2 z : + T 4 ,  

(ii) 

1 2 )  OS ~ /" k 1 
c* 3 - - ~  + ~ c v a' 

(12) 
, ~ c~ v ~ v,)l @% 

sgn(v__V,) + (_~_Zo + _ E  Z3 ) dosgn(v - 

c~v m~ ~ 
V-Y-S~ = - T  "c~ (1 --  (z,..) J~ + To -Y~ 

+,z '  o'v' + c"-;( @,-~ T 4 s g n ( y - v ' ) + ( ' ~ o ~ o . + z : ) s , @ ' ,  

1/~_S~ c~ ~ ( 1 - - a , , , ) J l + % - ~ J . + .  TH- k ' o~1 aS ~Ov, 
~ r 0 L 

@ i { [  k ( !  OSr 4_ (13) - - J 2 + - - ~ -  z - t - - ~ -  v ~ Oy' ' 

- - ~ +  

~.' or' c~ av' 7 Jo sgn (V --  Y') + (%R~ + G) J~. dr', 

J~ (l) = f" c': exp --c z - - d c ,  
b c 

(14) 
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The argument of the functions Jn in the integrands is t = [ y -  Y'I, while in the free terms 
t=y. 

OS t OS ~ OS ~ 
Relationships connecting the quantities ~t, Tr, Tv and O--g--' Oy '" Oy .....were used in (ii)- 

(14). These relationships can be obtained by integrating (4) in velocity space with the 
weights 

(c 2 - -  5/2) exp (--c~), (8~ - -  ( 8 r ) ) exp (--c2), (e~ - -  ( e ~ > ) exp (--c2): 

' r 

OV = oW" + - F o ~  - -  o~ + - - f  ~t, ~ = k 

aS ~ dv , (15) 
0 " - 7 -  = - - f  ~ (~ '  - ,o) .  

To close the system of equations (ii~-(14), four integral relationships are used that can 
easily be obtained from (8) and (9). For a further analysis it is convenient to introduce 
the functions 

(g) = ,p (y) + ~a, z (y) = r (y) + ~,  (16) 

where u~ = limv, ~.q-:: lirn~ define the density and vapor temperature jumps, respectively, on the 

interphasal boundary. 

Substitution of the relationships (16) into (ii) and (12), and the subsequent double- 
integration of the expressions obtained with respect to y in the range (y, ~) results in 
equations which take the following form when (16) is taken into account at y = 0: 

�9 . t [ C v  3/2"~) 
c~, ~ c~, "c~ --ux +1[2  + --5/2  
k ~---  --k- -fi- - V  k~ 

2 Rx) 3 m,.' mU m~Y 5/2) J~ 

+ ~ [ d ~ - - d a (  cv'--~.-+3)+3/2(f-~-+l/2)J1]+[(cvk 1 32 . ) osr .4 - 
�9 , a a y '  ' 

Og' 

15 

2 ---~-+ 1 ~2= .  4 

xo ( 1 3  m~. t m~. r 
+ - ~  l o  k ,1  + - ~ - + - -  

C V 

r H x 

k~l 15 RI + v (J3 -- 3/2./1) + ~ J~ -- 

c v ~ 3 ' - - 0 7 -  + c v o~' " • 

OS------~-~( J s - 2 " l a l J  4 (  ~ - 3 J ~ +  4 2 

The argument of the functions Jn in (17) and (18) is t = y'. 

~erefore, to calculate the density ~i and temperature ~2 jumps, the functions ~(y), 
T(y), sr(y), SV(y), ~r(Y), ~(Y), T~(y), ~(y) must be determined from (8), (9), (11)-(14). 

These equations are linear integral equations of Fredholm type, hence, the Galerkin 
method [7] can be used for their solution. Here the selection of the kind of trial functions 
for the ~croscopic quantities is important. It should here be kept in mind that the pro- 
files of the macroscopic quantities in direct proximity to the interphasal surface are de- 
scribed exactly by free terms of the integral-moment equations (11)-(14). Hence, the form 
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of the trial functions should be selected by starting from the behavior of the macroscopic 
quantities far from the surface in the Navier-Stokes region. According to (16), the func- 
tions ~(y) and T(y) for y+~tend to certain constant values. As regards the functionsS~(y), where 

= t, r, v, which are corrections to the translational, rotational, and vibrational compo- 
nents of the heat flux in the Knudsen layer, then they vanish as y + ~. Therefore, in a 
first approximation certain constants can be selected as trial functions for v and �9 while 
S ~ is set equal to zero. As the solution of an analogous problem showed for a monatomic gas 
[8], such an approximation induces no more than a 1.5% error. The same accuracy should ap- 
parently be expected even in the case of a polyatomic gas. 

Substituting the trial functions in (ii) and (12) and requiring orthogonality of the 
expressions obtained to the corresponding basis functions, we obtain a system of algebraic 
equations which, together with (8) and (9), determine the functions ~ and r uniquely. Sub- 
stituting them into (17) and (18) we obtain expressions for the quantities ~ and ~a. The 
method used here is elucidated in greater detail in [8]. Consequently, the formulas for the 
evaporation rate U and temperature jump ~T on the flat interphase boundary have the form 

(F2kT~ I ~/~[e~ 6 u  + 6  l dT(O) 1 
U = k'----m] L ~ T, dx .' 

6T = T , ~  = T~ ~ \ 2 - - ~  ] U + & " T,  dx ' ~'  = - - ( ~ ) - "  6 , = 6 ; ~ , .  ( 1 9 )  

The coefficients e~, 5~ and e~, 6a have the form 

8[: ( I -  ~ ) 2 V ~ - " -  V-~-' l~ \ , (20) 
a~ 2 4 ( f~ - - - ] -1 )  

. 2 -  

___ , ,  , ,  

(1-~~ ( 1 - % )  ~--..V.P,, K ~ 7 ( K ~ - - 2  ) ~Jt-fi--~ kn x 

K, 1 +  + ~  T ,  k - . 

+ ~ [ 3 \ - - k -  - -  W',.: - -  2 i -  ( I  - -  ~z,~) -6-  ~ ( I  - -  0r K~, + ( !  --- rx~) X 

' ~ / (K~ - -  z)I\ I - -  [}--V - -  - - 2 ,  - i- K~ § - -~  - -  5,'2, ~-, 

c r  I ~'~'1| ] i  

X 

(21) 

t ] e~ = - -  , - (K,, -}- 5/4) {1 - -  ~m) (1 - -  g~) -}- K2 4 ~ 
~!q" --K + 1! ~, ~ ' 

2!.T + '~ - fK ~ 2a, 14 
l 

X K ~ d -  4 /, ,: ., , 

{ ~ /  4 7 )+( ,__~, . ) i~K,  + ' ) ( ' - % , x  X K~(i-}-  ~ - !  - F ~ { ' I  ~ .-z r 
�9 a \ 1 2  . c 

X 

X 

(22) 
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Flg. i. Dependence of the parameters 6= (a) and ~, 
(~) on the quantity = ~or =~ = ={ = =~ = l: l) [~]; 

2) [i]; 3) our results; 4) [4]. 
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Fig. 2. Dependence of the parameters e, 
Ca) for ~- u{ = , , ~ -  l ,  ~= (b~ ~or ~- 
o~,---~--0.5, ~, ~c)for .~ = , ,{  = ~ -  

o . 5 ,  ,, - 0 . 3 ,  ~,  (d)  f o r  0,~ -- o,~. - , ~  - l ,  

u = 0.3 on the evaporation coefficient (I- 
monatomic gas). 
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Fig. 3. Dependence of the parameters E, 
(a) for u m = 0.5, e2 (b) for Um = 0.5, 
6= (c) for Um = 0, u = 0.3, 61 (d) for 
~m = 0.5, u = 0.3 on the accommoda=lon 
coefficients of translational, rotational, 
and vibrational energies. 
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Here 

) ' ( i  -- .%,) ) (K_, -~- ,1 I ~ '  , 

~" (' 5 ~ (! __ 7 5 , o , X.,  --i- .,-<.:.; ! - ! -  K ,  .} t~ - -  ~,,,.) 5~'~ { -.} . . . .  ) X 
/ 

/ ~ - -  r ' f  I C~/  ,, 1 
. . . .  ~,- @ -~- (K~. -/- 1 ) - U  ": - -  =~) i-  (1 . . . .  e',j }- 

(23) 

K,  = [ ( 1 - - ~ . ~ )  - (~ - c , . ~ ) -  ( I  - % ) -  oc t '  ( I  . -  ~ . )  K:,., 

K ~ =  (1 -c,,.=) 5 1 2 ( 1 - - @ . ) +  ~ 

c v I t , Cv ( 1 - - % ) - 1 -  c~. ( 1 - - ~ e )  , 
K ~ = - - U + 7 - ( I - ~ , . )  2 ( I - % ) ~ - - - ~ -  ' - - U  

K~, = K1 -~- 1i2 ~ - -  2, 
CrV C v r v 

V r CV K5 = ~ ~ (1 - -  o~) 4- -E"  o~ ( 1 - -  oct), R = 1 -F 5/6 c v  (~ + 5/6 cd. , , - - ~  

Let us consider the dependence of the evaporation rate and the temperature jump on the 
molecule internal degrees of freedom, on the evaporation coefficient am, and the accommoda- 
tion coefficients of the translational a~, rotational a~, and vibrational a~ energies. 

For total accommodations (apt = a~ = ~ = I) the parameters ~1,2 depend on the internal 

degrees of freedom only in terms of the internal specific heats. The contribution of the in- 
ternal degrees of freedom to these parameters is not identical in comparison to the result 
for a monatomic gas [8]. Thus, if r diminishes by ~9 and ~6%, respectively, for a gas with 
rotational-vibrational and only rotational degrees of freedom, then ca increases by ~47 and 
~31%, respectively. (The magnitude of the change in the coefficients el and e2 in [4] is 3% 
and 28%, respectively in [4].) As regards the quantities ~z.a, then for a~ = a~ = ~ = I 

their dependence on the internal degrees of freedom is more c~omplex than for r ,a. Besides 
the internal specific heats, this dependence appears even in terms of the ratio of the relax- 
ation times a, a'~ [8, 9'. The dependence of the parameters ~x and ~a on a is represented in 
Fig. i. It is known [9] that for nonpolar molecules 13 = 13' = 1.32; the quantity~' is se- 
lected, for simplicity, equal to zero. (The gas with rotational degrees of freedom is de- 
scribed by the dashed curve in the figures, and with rotational-vibrational degrees of free- 
dom by the solid curve.) It is seen in Fig. ib that the coefficient ~x increases very 
slightly (~2%) as ~ grows. But the distinction from the result for a monatomic gas (61 = 
--0.73) reaches ~20% for a gas with rotational and ~27% with rotational--vibrational degrees 
of freedom. The dependence of ~x on ~ in [4] is rather steeper and the discrepancy for ~ 
1.2 is ~7%. 

The parameter ~2 is reduced as a grows, which is explained by the passage of part of 
the translational energy into internal for intermolecular collisions. This diminution in 
~2 for a gas with rotational degrees of freedom reaches 16% and 20% for rotational-vibra- 
tional degrees of freedom as compared to the result for a monatomic gas (62 = 2.17). Let us 
note that the results presented for ~2 in this paper differ by not more than 3.5% from the 
majority of data available in the literature. 

The dependence of the parameters ~,~ and ~,2 on the evaporation coefficient am is 
represented in Fig. 2. As a m increases, the quantities s~,2 grow, where the difference be- 
tween the monatomic gas (curve I) and the gas with rotational and rotational-vibrational 
degrees of freedom (curve 2) is insignificant for e:. On the other hand, the coefficients 
6~,~ diminish as a m grows, here the values of ~: are very close for small ~m both for the 
monatomic and polyatomic gases and are different just for =m~1. 

The accommodation dependence of the parameters ~)~ and 6~,2 is presented in Fig. 3. 
Curves 1 describe the dependence of these parameters on the coefficient a~ for a~ = a~ -- i, 
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and curves 2 on a~ for a~ = a~ = I. This same curve describes the dependence of c~,a and 
6:,a on the accor~odatioE coefficient of the translational energy is seen in all the graphs, 
while it is considerably weaker for the internal energy accorm~odation coefficients. 

NOTATION 

m, molecule mass; k, Boltzmann constant; Ts, condensed phase surface temperature; ns, 
Ps, number density and pressure of the saturated vapor for Ts; T t, T r, TV, T, respectively, 
the translational, rotational, vibrational, and total temperatures; c~, c~, CV, specific heats 

corresponding to the vibrational and rotational degrees of molecule freedom, and the total 
specific heat for constant volume; n(x), number vapor density; U, evaporation rate; El, E~, 

respectively, the energies of the i-th rotational, and the j-th vibrational levels; E~, E~, 
equilibrium values of the rotational and vibrational energies; it, Ir, lv, respectively, the 
heat conduction coefficients due to the translational rotational, and vibrational degrees of 
freedom; vi, i-th component of the molecule velocity; pr pv i' i' respectively, the probability 
of the rotational E[ and EY states; ~, coefficient of dynamic viscosity of the gas; nr, T~, 

3 
r T~, respectively, the density and the translational, rotational, and vibrational tempera- T r , 

tures of the reflected molecules; am, a~, a~, a~, respectively, the evaporation coefficient 

energies; 6n, 6T, respectively, the vapor density and temperature jumps on the interphasal 
boundary; Z, length of the molecule mean free path. 

LITERATURE CITED 

i. V.M. Kuznetsovand M. M. Kuznetsov, "On boundary conditions for polyatomic gas flows," 
Zh. Prikl. Mekh. Tekh. Fiz., No. 4, 93-102 (1975). 

2. J.T. Lin and D. R. Willis, "Kinetic theory analysis of temperature jump in a polyatomic 
gas," Phys. Fluids, 15, No. i, 31-38 (1972) 

3. T.F. Morse, "KinetiC--model for gases with internal degrees of freedom," Phys. Fluids, 
~, No. i, 159-166 (1964). 

4. A.A. Abramov and N. K. Makashev, "On the influence of excitation of the internal de- 
grees of freedom of molecules on the weak evaporation or condensation process," Izv. 
Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 6, 98-110 (1979). 

5. P.E. Suetin, I. V. Chermyaninov, and V. G. Chernyak, "Approximate kinetic equation for 
the weakly nonequilibrium states of polyatomic gases," Izv. Akad. Nauk SSSR, Mekh. 
Zhidk. Gaza, No. 2, 183-187 (1982). 

6. M. Ya. Alievskii, "Relaxation, sound propagation, and transfer processes in molecular 
gases," Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No, 5, 53-67 (1970). 

7. S.G. Mikhlin, Variational Methods in Mathematical Physics [in Russian], Nauka, Moscow 
(1970). 

8. V.G. Chernyak and P. E, Suetin, "On the problem of temperature and density jumps du~- 
ing evaporation and condensation," Deposited in VlNITI, No. 3639-77 (1977). 

9. Eo A. Mason and L. Monchick, "Heat conductivity of polyatomic and polar gases," J. Chem. 
Phys., 36, No. 6, 1622-1639 (1962). 

1378 


